Quantum-Inspired Evolutionary Algorithm-Based Face Verification

نویسندگان

  • Jun-Su Jang
  • Kuk-Hyun Han
  • Jong-Hwan Kim
چکیده

Face verification is considered to be the main part of the face detection system. To detect human faces in images, face candidates are extracted and face verification is performed. This paper proposes a new face verification algorithm using Quantum-inspired Evolutionary Algorithm (QEA). The proposed verification system is based on Principal Components Analysis (PCA). Although PCA related algorithms have shown outstanding performance, the problem lies in the selection of eigenvectors. They may not be the optimal ones for representing the face features. Moreover, a threshold value should be selected properly considering the verification rate and false alarm rate. To solve these problems, QEA is employed to find out the optimal distance measure under the predetermined threshold value which distinguishes between face images and non-face images. The proposed verification system is tested on the AR face database and the results are compared with the previous works to show the improvement in performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary algorithm-based face verification

This paper proposes a novel face verification method using principal components analysis (PCA) and evolutionary algorithm (EA). Although PCA related algorithms have shown outstanding performance, the problem lies in making decision rules or distance measures. To solve this problem, quantum-inspired evolutionary algorithm (QEA) is employed to find out the optimal weight factors in the distance m...

متن کامل

BQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems

Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...

متن کامل

Verification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation

Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...

متن کامل

An Improved Imperialist Competitive Algorithm based on a new assimilation strategy

Meta-heuristic algorithms inspired by the natural processes are part of the optimization algorithms that they have been considered in recent years, such as genetic algorithm, particle swarm optimization, ant colony optimization, Firefly algorithm. Recently, a new kind of evolutionary algorithm has been proposed that it is inspired by the human sociopolitical evolution process. This new algorith...

متن کامل

Solution of "Hard" Knapsack Instances Using Quantum Inspired Evolutionary Algorithm

Knapsack Problem (KP) is a popular combinatorial optimization problem having application in many technical and economic areas. Several attempts have been made in past to solve the problem. Various exact and non-exact approaches exist to solve KP. Exact algorithms for KP are based on either branch and bound or dynamic programming technique. Heuristics exist which solve KP non-exactly in lesser t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003